Debate	Safety	Takeaways	References

Climate Models and the Irrelevance of Chaos

Corey Dethier

Leibniz Universität Hannover Philosophy Department corey.dethier@gmail.com

Nov. 11, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Intro	Debate	Safety	Takeaways	References
0000				

Intro

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Prediction, roughly:

- Start with initial conditions.
- Apply dynamics.
- Get (expected) outcomes.

Intro	Debate	Error	Safety	Takeaways	References
●000	00	0000	00000	00	
Predictic	n				

Prediction, roughly:

- Start with **initial conditions**. \leftarrow small difference
- Apply dynamics.
- Get (expected) outcomes.

 \leftarrow large difference

If the system is **chaotic**, then an arbitrarily small difference in initial conditions leads to arbitrarily large difference in outcomes.

Intro	Debate	Error	Safety	Takeaways	References
●000	00	0000	00000	00	
Predictio	n				

Prediction, roughly:

- Start with initial conditions.
- Apply dynamics.
- Get (expected) outcomes.

 \Leftarrow small difference

 $\Leftarrow \mathsf{large} \mathsf{ difference}$

Analogous property: an arbitrarily small difference in the dynamics leads to arbitrarily large difference in outcomes.

Intro	Debate	Error	Safety	Takeaways	References
0●00	00	0000	00000	00	
The cc	ontroversy				

The "LSE group" (allegedly): there is an analogy to chaos; it spells trouble for climate modeling (see Frigg, Bradley, et al. 2014).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The "USF group": there is no analogy, and (thus) the claimed problems for climate science don't exist (e.g. Winsberg 2018).

Intro	Debate	Error	Safety	Takeaways	References
00●0	00	0000	00000	00	
Enter thi	s talk				

Me: any analogy to chaos is largely irrelevant for the epistemology of climate science.

Because: chaos-like sensitivity is neither necessary nor sufficient for predictive error.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Intro	Debate	Error	Safety	Takeaways	References
000●	00	0000	00000	00	
Plan					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 1. The debate.
- 2. The analogy & why it doesn't matter.
- 3. What does matter: safety.
- 4. Some takeaways.

Debate	Safety	Takeaways	References
00			

The debate

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Intro	Debate	Error	Safety	Takeaways	References
0000	●0	0000	00000	00	
Error					

"Trying to predict the true climate with structurally wrong models is like trying to predict the trajectory of Mercury with Newtonian models. These models will invariably make misleading (and likely maladaptive) projections beyond some lead time." (Frigg, L. A. Smith, and Stainforth 2015, 3997)

"Only strong [read: *dis*analogous] versions [of chaos] are usually taken to have strong epistemological consequences, since they are likely to produce error." (Nabergall, Navas, and Winsberg 2019, 7)

(1) Climate models systematically misrepresent actual laws.

(2) Dynamically unstable systems are *like* chaotic systems in that small differences in laws lead to large differences in outcomes.

(3) The climate is a dynamically unstable system.

(4) If there's a large difference between the outcomes generated by the model and the truth, then the prediction is erroneous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(C) Predictions made using climate models are liable to be erroneous.

Debate	Error	Safety	Takeaways	References

Error

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Intro	Debate	Error	Safety	Takeaways	References
0000	00	●000	00000	00	
Chaos ((what is it	?)			

Roughly: start with small differences, get big differences.

Less roughly (SDIC): $d(x_t, y_t) > e^{\lambda t} d(x_0, y_0)$.

A gloss: "a system exhibits sensitivity to initial conditions [SDIC] if no matter the true initial state x, there is an **arbitrarily close** state y such that, if y had been the initial state, the future would have been **radically different**" (Mayo-Wilson 2015, 1238).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0●00	00000	00	
The pr	oblem (wit	h the deba	ate)		

Chaos is neither necessary nor sufficient for erroneous predictions. Not necessary is obvious: there are lots of reasons why a prediction could be erroneous.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E.g., $d(x_0, y_0) = d(x_t, y_t)$, but both are really large.

Intro	Debate	Error	Safety	Takeaways	References
0000	00	00●0	00000	00	
Insufficie	ency				

- The solar system is chaotic: $d(x_t, y_t) > e^{\lambda t} d(x_0, y_0)$.
- The Lyapunov exponent (λ) is approx. .2 × 10⁻⁷.

Upshot: not really relevant for (say) landing a rover on the moon in a week.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intro	Debate	Error	Safety	Takeaways	References
0000	00	000●	00000	00	
What's	gone wro	ong?			

Chaos is only relevant to error insofar as the scales on which the system is chaotic line up with the scales on which our predictions actually operate.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Debate		Safety	Takeaways	References
0000	00	0000	00000	00	

What really matters: safety

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	●0000	00	
A differ	rent view c	of predictic	on		

- A different view of prediction:
 - Start with empirical evidence.
 - Synthesize using various background assumptions.
 - Use the resulting theory / model to generate a prediction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	0●000	00	
Safety					

Say that the support for a conclusion / prediction is "safe" when we have just as good reason to endorse the conclusion given "nearby" ways of systematizing the evidence.

Compare Reed (2000), G. E. Smith (2002, 2014), and Staley (2004).

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	00●00	00	
An unsa	ife examp	le			

If the sun is at the focus of the ellipse:

$$d = A \frac{(1-\epsilon^2)}{1-\epsilon\cos\theta}$$

$$a \propto r^{-2}$$

If the sun is at the center of the ellipse:

$$d = A\sqrt{1-\epsilon^2 \sin^2 \theta}$$

$$a \propto r$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

	alogy to ch				
Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	000●0	00	

Start with a "small" difference (from our point of view). End up with a "big" difference (also from our point of view).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	0000	00	
What re	eally matt	ers			

When we're worried about error, what really matters is how safe our predictions / conclusions are in this sense.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Debate	Safety	Takeaways	References
		00	

Takeaways

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Intro	Debate	Error	Safety	Takeaways	References
0000	00	0000	00000	●0	
Robust	ness is goo	bc			

- If a hypothesis is robust across multiple models, that's evidence that it's safe.
- (How good this evidence is in actual cases is another question.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Intro Debate Error Safety Takeaways References

Dynamical instability is important

The dynamical features highlighted by the LSE group explain *why* certain conclusions are unsafe.

Importantly, they also indicate that we cannot expect safe conclusions at the relevant level of scale at any point in the near future.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Debate	Safety	Takeaways	References

- Frigg, Roman, Seamus Bradley, et al. (2014). Laplace's Demon and the Adventures of His Apprentices. *The Journal of Philosophy* 81.1: 31–59.
- Frigg, Roman, Leonard A. Smith, and David A. Stainforth (2015). An Assessment of the Foundational Assumptions in High-Resolution Climate Projections: The Case of UKCP09. Synthese 192.12: 3919–4008.
 - Mayo-Wilson, Conor (2015). Structural Chaos. *Philosophy of Science* 82.5: 1236–47.
- Nabergall, Lukas, Alejandro Navas, and Eric Winsberg (2019). An Antidote for Hawkmoths: On the Prevalence of Structural Chaos in Non-linear Modeling. *European Journal for Philosophy of Science* 9.21: 1–28.
 - Reed, Baron (2000). Accidental Truth and Accidental Justification. *The Philosophical Quarterly* 50.198: 57–67.

Debate	Safety	Takeaways	References

Smith, George E. (2002). From the Phenomenon of the Ellipse to an Inverse-Square Force: Why Not? In: *Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics.* Ed. by David Malament. La Salle: Open Court: 31–70.

 - (2014). Closing the Loop: Testing Newtonian Gravity, Then and Now. In: Newton and Empiricism. Ed. by Zvi Beiner and Eric Schliesser. Oxford: Oxford University Press: 262–351.

- Staley, Kent W. (2004). Robust Evidence and Secure Evidence Claims. *Philosophy of Science* 71.4: 467–88.
- Winsberg, Eric (2018). *Philosophy and Climate Science*. Cambridge: Cambridge University Press.