The Unity of Robustness

Corey Dethier

University of Notre Dame
Philosophy Department
corey.dethier@gmail.com

April 19
Pacific APA
Introduction
Disunity: there’s a difference between robustness (or agreement) in modeling and experimental contexts

I think disunity is false; or, that unity is true.
Primary argument for disunity goes back to Cartwright, who points out that:

unlike what is the case when experiments or measurements agree, different models “do not constitute independent instruments doing different things, but rather different ways of doing the same thing: instead of being unrelated, they are often alternatives to one another, sometimes even contradictory” (Cartwright 1991, 153).
Three arguments for unity:

1 – Negative argument: mutual inconsistency among model assumptions does not imply that models are alternatives (in the requisite sense).

2 – Positive argument: given some plausible assumptions, there’s a formal equivalence.

3 – Recapitulation: the original intuition can be recaptured.
Negative argument
The opposed intuition

When there are multiple measurements, the tools used aren’t in conflict (in any sense).

The same isn’t true of the models employed in an ensemble of models: these usually rely on assumptions that mutually inconsistent.
What's wrong with this argument?

Simply: assumes that what matters for our confidence in model results is whether the model has true assumptions, when what really matters is whether it can be used as part of a reliable test of our hypothesis.
Suppose we want to use a pendulum to as part of a test of a hypothesis about acceleration, and we model the relationship between measurable quantities of the pendulum and acceleration with

\[l = \frac{a T^2}{4\pi^2} \]

where \(T \) is the period and \(l \) the length of the string.

Strictly speaking, however, the model has false assumptions.
What does this show?

Just that a model having true assumptions are not necessary for having high confidence in the model result.

What matters instead is the reliability or trustworthiness of the model (in the given context!).
The point vis-a-vis robustness

But if the truth of the model assumptions doesn’t (directly) determine my confidence in the result, then inconsistency across model assumptions is largely irrelevant.

What matters instead is mutual unreliability.

But mutual inconsistency is not sufficient for mutual unreliability.

Hence the argument for disunity fails.
The positive argument

Simply: given two plausible assumptions, I can show that there’s a formal equivalence between (some?) cases of experimental and modeling robustness.
First assumption

The one just argued for: what matters for our confidence in a proposition is the reliability of the model, not whether it has true assumptions.

Why does this matter?

There's a standard model of the value of variation across models owed to Woodward (2006).

But this model assumes that the success of one model rules out the success of the others—I need to drop that.
Let r_i indicate some important condition on the reliability of the model. Oversimplifying:

1st model

$\neg r_2$

$\neg r_1$

r_2

r_1

2nd model

$\neg r_2$

r_2

$\neg r_1$

r_1

Both models

$\neg r_2$

r_2

$\neg r_1$

r_1
“More data” and “varied data” are conceptually distinct and can come apart.

(And therefore, obviously, if we’re aiming to give an analysis of the second, we should try and distinguish it from the first.)
Imagine the data-collection limit, where we have infinite data from an experiment

1. No value from simply repeating the same test (more data).
2. Still some value to varying experiment (some data)

Why? Because the latter corrects for systematic errors in a way the first one doesn’t.
Let r_i indicate some important condition on the reliability of the experiment.

1st experiment

\begin{array}{|c|c|}
\hline
r_2 & \neg r_1 \\
\hline
\end{array}

2nd experiment

\begin{array}{|c|c|}
\hline

\end{array}

Both experiments

\begin{array}{|c|c|}
\hline

\end{array}
Given the two assumptions, there’s a formal equivalence between robustness in the two cases.

Strong evidence that unity is true (and disunity false) but not necessarily definitive.
Recapitulation
I’ve argued that robustness is a single, unified, epistemic phenomenon: there’s no difference between robustness in modeling and experimental contexts.

But there is *something* to the intuition that robustness is more valuable in experimental contexts.

This something is a tendency—but probably an overemphasized one.
Reasons for the tendency

Speaking generally, the more knowledge we have a phenomenon—the better any one model that we can construct—the harder it is to build multiple (semi-independent) models.

By contrast, the more knowledge we have a phenomenon, the better (and more diverse) our experimental access.

Since the value of robustness depends in part on the quality of the tools involved, the implication is that there will tend to be more value to robustness in experimental cases, as those are the cases in which our tools are better.
That said, this tendency is probably overemphasized. The literature likes to compare exemplary experimental cases (e.g., Perrin) to cases in which the models employed are all very similar and have very little empirical evidence to support them.

But since robustness depends on those factors, the result is a sort of “no true scotsman”: of course robustness across models doesn’t provide good evidence if matching Perrin is the criteria of “good evidence.”

When we insist on a *ceteris paribus* comparison—as I do in §2—the two look exactly the same.
Conclusion

I’ve done three things in this talk:

1 argued that the standard argument for disunity fails: we cannot move from mutual inconsistency of model assumption to a needing different analyses

§2 provided a positive argument for unity on the basis of two plausible assumptions.

§3 recovered the original intuition.